Bulletin

The Rose Family Grows

Analysts: Jaga Shahani and Steve Garone

IDC Opinion

How will object-oriented analysis, modeling, design, and
construction (OOAMDC) tools address the needs of developers of
embedded and real-time software systems?

With the race for a real standard for object-oriented analysis and
design notation won by UML, user and vendor efforts alike have now
turned to how to use UML in a variety of development venues. One
of these is the development and deployment of real-time systems.
UML is well-suited for this use, although a vendor-driven approach
to extending UML to support real-time modeling constructs was
needed.

Rational Software Corp. and ObjecTime Ltd. have pooled their
experience to create a real-time profile for UML that has resulted in
a version of Rational’s highly successful Rose product specifically
targeted toward real-time users: Rose RealTime. Rose 98i, a new
version of its standard Rose product, provides greater integration
with other important and related products and, more importantly,
adds support for UML’s business process modeling capabilities.

Together, these product versions move Rational into an even more
competitive position in a market that, from the standpoint of
product revenue, it has led for four years.

A View of Real-Time Systems

A fundamental shift in perception is Real-time systems have been around for a long time. One typically
occurring, with personal computing associates real-time systems with telecommunications, aerospace,

systems moving from being defense, automotive, and industrial control applications. However,
considered computational devices with the emergence of multimedia computing and communications,
to being considered real-time real-time systems are becoming more pervasive. A fundamental shift
communication and entertainment in perception is occurring, with personal computing systems
controllers. moving from being considered computational devices to being

considered real-time communication and entertainment controllers.

Whether in handheld devices or fast network switches, the need for
real-time systems exists. With the explosion in the Internet and Web
domains, real-time systems are in even greater demand to ensure
fast, predictable service. In several instances, the systems being
developed are complex, networked, and distributed.

Real-time systems are usually characterized as having the ability to:
» Respond reliably and predictably to events

» Be fast and deterministic in their responses

» Perform concurrent processing of multiple tasks

* Be embedded in a device or system with limitations on memory,
physical properties, processor performance, etc.

While a number of real-time software development methods have
been introduced, the design and development of complex real-time
systems have been high-risk adventures. Methods have either been
ill suited to the process or not used effectively to model and design
large, complex real-time systems.

Object-oriented modeling Object-oriented modeling methodologies have made considerable
methodologies have made strides over the last five years, culminating in the adoption of
considerable strides over the last Rational Software’s Unified Modeling Language (UML) by the Object
five years, culminating in the Management Group (OMG) as a standard. UML is finding
adoption of Rational Software’s applicability in data-driven application development and acceptance
Unified Modeling Language (UML) in IT organizations.

by the OMG as a standard.

However, object-oriented methods and notations for complex real-
time systems have taken a back seat. While some methods have
addressed the analysis and design of complex real-time systems, they

Quoting IDC Information and Data: /nternal Documents and Presentations—Quoting individual sentences and paragraphs for use in your
company’s internal communications does not require permission from IDC. The use of large portions or the reproduction of any IDC document in its
entirety does require prior written approval and may involve some financial consideration. External Publication—Any IDC information that is to be
used in advertising, press releases, or promotional materials requires prior written approval from the appropriate IDC Vice President or Country
Manager. A draft of the proposed document should accompany any such request. IDC reserves the right to deny approval of external usage for any
reason.

Copyright 1999 International Data Corporation. Reproduction is forbidden unless authorized.
For additional copies please contact Cheryl Toffel, 508-935-4389.

Check us out on the World Wide Web! http://www.ide.com

Printed on recycled materials. €

20089 -2-

i

International Data Corporation

While industry experts have been
touting the value of the object-
oriented approach for real-time
system development for a decade,
development teams have chosen to
forgo reuse and dynamic binding in
favor of performance and time to
market.

UML is well suited to adopt real-
time modeling constructs, and Rose
RealTime now brings the object-
oriented paradigm squarely into this
domain.

d

International Data Corporation

have not found wide adoption. Notable among these is the Shlaer-
Mellor method, which uses three basic models to express a system:
the information model that identifies relationships between objects,
a state model that formalizes dynamic behavior, and a process model
that formalizes the processing required. Communication between
objects is displayed via an object communication model, which is
similar to the architecture diagram in UML. Real-time constraints
are expressed through a thread of control chart, which allows
annotation of each state with its action time.

The Shlaer-Mellor method presents a rigorous and extremely well-
defined formalism for the analysis, design, and implementation of all
kinds of systems. However, the changes in the development
paradigm it poses to organizations and the high degree of “up front”
work it requires have made it practical for only very large, complex
applications.

There have been many proprietary and competing methods and
tools, none of which achieved widespread adoption. UML
incorporates the best practices found in all of these methods and
provides a foundation for rapid market acceptance and adoption.

While industry experts have been touting the value of the object-
oriented approach for real-time system development for a decade,
development teams have chosen to forgo reuse and dynamic binding
in favor of performance and time to market. A significant
contributor to this attitude has been the lack of a robust method,
notation, and tool that can handle the timing constraints that real-
time systems have. Also, the nondeterminism associated with certain
object-oriented properties and the suitability of the methods to
model real-time constraints and the run-time have been
contributing factors to slow adoption.

UML is well suited to adopt real-time modeling constructs, and Rose
RealTime now brings the object-oriented paradigm squarely into
this domain. Rational Software and ObjecTime have collaborated to
define a comprehensive approach for the application of UML to the
development of complex real-time systems. In the same way that
UML incorporates popular and effective software practices, Rational
and ObjecTime have collaborated to incorporate the types of
practices found in the real-time domain into an engineering tool
optimized for the real-time developer. The ROOM (Real Time Object
Oriented Modeling) method developed by Selic and others has been
in use for some years to model complex real-time systems. The
partnership led by Rumbaugh and Selic focused on taking the design
patterns and concepts from ROOM into UML.

UML: The Real-Time Highlights

UML was developed with built-in mechanisms (stereotypes) to
support domain-specific modeling. constructs. Stereotypes provide a
way of classifying model elements through the addition of UML
metaclasses with new attributes and semantics.

20089

Central concepts in ROOM were
captured through specializations of
UML’s stereotype, tagged values,
and constraints mechanisms.

In UML for the real-time domain,
the specification of a complex real-
time system can be expressed
through a combination of class and
collaboration diagrams.

20089

Fundamentally, no new modeling concepts were required to tailor
UML for the real-time domain. Central concepts in ROOM were
captured through specializations of UMLs stereotype, tagged values,
and constraint mechanisms. UML provides two basic and
complementary diagrams to express the logical structure of systems:

* The class diagram is a static view of the system and shows the
relationship among entities (classes) that make up the system. It
is a generalized view of all instances and contexts of the defined
classes.

* The collaboration diagram captures relationships that exist in a
specific context.

In UML for the real-time domain, the specification of a complex real-
time system can be expressed through a combination of class and
collaboration diagrams. Three new constructs were defined to
address modeling structure: capsules, ports and connectors.

Capsules are the fundamental modeling element of real-time
systems. Figure 1 depicts an example use of capsules. Capsules are a
pattern for providing concurrency in UML notation. A capsule is a
specialization of a class, having the same properties as a class
(attributes and operations) and possibly participating in
relationships.

Figure 1
Capsule Collaboration

5 CapsuleClassA

[
L 5
b:CapsuleClassB c:CapsuleClassC

{phagin}

| I

Source: Rational Software Corp. and ObjecTime Ltd., 1999

However, a capsule also has certain special properties that
distinguish it from a class. A capsule interacts with other objects
through signal-based boundary objects called ports. These ports are
the only mechanism they have for communicating with other
objects in the system. The structure of a capsule is completely
private, and no outside object can access its attributes. Messages are
the sole method of communication between capsules, and these are
received and sent through ports. The behavior of a capsule is defined
and controlled by an optional state machine only. Capsules that do
not have state machines are containers for subcapsules. A state
machine is the only element that can access the protected parts of a
capsule. Because capsules can only communicate through ports,

i

International Data Corporation

Capsule collaboration diagrams are
key to the expression of the
architecture of a real-time system.

Rose RealTime is a software
development environment that
allows the development of real-time
applications using UML.

d

their implementation can be kept completely private. This
encapsulation makes them highly reusable.

The internal organization of a capsule can be formally specified as a
set of networked subcapsules — referred to as capsule collaboration
— and the subcapsules play capsule roles. Capsule roles represent a
specification of the type of capsules that can occupy a position in a
collaboration. Capsule roles are owned by the container capsule and
cannot exist independently. A network of collaborating capsule roles
is joined by connectors.

Ports are boundary objects that act as interfaces. They are not the
same as UML interfaces. Ports include both structure and behavior,
and are objects that send and receive messages for capsules. They are
owned by the capsule and are created and destroyed along with the
capsule instance. Ports are associated with protocol roles that specify
the messages that are sent and received.

Capsule collaboration diagrams are key to the expression of the
architecture of a real-time system. A capsule collaboration displays
the communication between capsules and the composite structure
of its capsule roles, ports, and connectors. Roles in a capsule
collaboration are restricted to capsule roles; association roles are not
allowed.

Since capsules communicate with each other through ports, a
capsule collaboration shows the capsules’ ports. These ports can be
shown as public ports (accessible by other capsules) and protected
ports (private to the structure of the capsule).

Rationals Rose RealTime Environment

Rose RealTime is a software development environment that allows
the development of real-time applications using UML. It
encompasses all phases of application development, from system
requirements, analysis, and design through to code generation,
debugging, testing, and deployment. In many ways, Rose RealTime is
very similar to standard Rose. Key differences are 1) the ability to
generate complete applications directly from the UML design,
targeted to real-time operating systems, and 2) UML model
debuggers that allow a developer to control and observe an
executing application at the UML model level (e.g., set a break point
on a state machine).

Structure Diagrams

Capsule structure is defined using the Capsule Structure Editor.
This includes how instances of a capsule class are composed of other
capsule class instances and protocol class instances (ports). The
Structure Editor consists of three parts:

The structure diagram area

The structure browser

The structure toolbox

International Data Corporation -5- 20089

To show association or

collaboration among capsule roles,

Rose RealTime provides the

Collaboration Diagram Editor.

Source: Rational Software Corp., 1999

20089

Structure elements, such as ports and capsule roles, may be dragged
onto the structure diagram area from any browser (usually from the
model browser). The structure browser can be used to navigate to
and open editors and specification dialogs on contained structure
elements.

Collaboration Diagrams

Figure 2 shows an example of a collaboration diagram. To show
association or collaboration among capsule roles, Rose RealTime
provides the Collaboration Diagram Editor. The Collaboration
Diagram Editor consists of two parts:

* The diagram area

e The tool box

Figure 2

Sample Collaboration Diagram from Rose RealTime

K Top

M= B

1 Ton
= Fwi=
B e T
= Se.
= Pk

el | LA T

|

supotine sppbcshor on mertaces or
B Feriari rolaicsi. Sl Braadpaink an

b o 0 W00 OSBGOS N AL L‘
TSI A

S ;S e ; Bac
b TH ¥

+]+]

e
PR

| o/

e Callabarationop

Elements such as classifier roles, capsule roles, and association roles
are added using the tool box.

State Diagrams

The State Diagram Editor is used to define the finite state machine
for a class. The utility of the class diagram depends on the type of
class it is specifying:

-6- International Data Corporation

i

* For capsule classes, the state diagram will result in a complete
code implementation generated for the class. The state diagram
defines the majority of a capsule class implementation.

* For protocol classes, the state diagram specifies the expected
operation of any capsules that contain one of the protocol’s
roles. The protocol state diagram defines the allowable sequence
of message inputs and outputs with respect to the protocol
roles. There is no code generated for the protocol class behavior.

* For data classes, the state diagram captures the abstract
behavior for the class. This does not result in any code being
generated for the data class.

Figure 3 depicts an example of a state diagram. The State Diagram
Editor consists of three parts: the diagram area, the navigator area,
and the toolbox. Behavior elements, such as states and transitions,
are added using the toolbox. The State Diagram Editor window has
tabs on the bottom to allow quick navigation to any nested states
and to the Capsule Structure Editor.

Figure 3

Sample State Diagram from Rose RealTime

& Call

Mame l

B[Navigator
B3 NoActivet
=B Terminatil
. 3 Ringin
=B Originatint
O waitin
D Alettin
-3 Connecte
B[Operatians

. P updateDit
B[Attributes

- R dialedMur
B[End Ports

W callContro

1

=] B3

| »

model level breakpoints, and trace
friggering everts
s

e .
release importorig
offhook Sy ﬂ

Junctio

Initial

Probes, on states and ransitions, set B}

offHook

CriginatingCall answer Connected

kg

Feb 01, 1999

\ % State: TOP

Source: Rational Software Corp., 1999

The State Diagram Editor allows the
creation or editing of states, state
transitions, choice points, initial
states, junction points, and end
states (except for capsules).

d

The State Diagram Editor allows the creation or editing of states,
state transitions, choice points, initial states, junction points, and
end states (except for capsules). The state machine can be nested,
allowing the creation of hierarchical state machines. Hierarchical
state machines maintain a state history. When a transition

International Data Corporation -7- 20089

In IDC’s opinion, the model compiler
that generates complete
applications from the UML model is
a major contribution to enhancing
developer productivity.

In Rose RealTime, a user can
observe the state transitions in the
state machine of an application
while it is executing on the target.

20089

terminates on a hierarchical state, the history mechanism may be
triggered to determine which substate becomes the active state.

Building Executable Models

Transforming design models into code has always been a difficult
task. It is at this point in the development cycle that departure from
the original requirements usually happens. Rose RealTime is able to
generate 100% of the code directly from the UML model diagrams.
Rose RealTime generates source code, which is compiled and linked
into machine language using an external compiler and linker.

In IDC’s opinion, the model compiler that generates complete
applications from the UML model is a major contribution to
enhancing developer productivity. It allows users to stay focused on
the problem domain and let the model compiler translate their
design into code. Designers can quickly generate executable models
to observe behavior, which in turn will greatly advance the iterative
processes of requirements specification, modeling, and
implementation.

Running and Debugging Executable Models

Once components have been built successfully, Rose RealTime
provides an execution environment that can be used to run, control,
and observe models running on a processor. It is possible to run and
control multiple component instances from within Rose RealTime.

In Rose RealTime, a user can observe the state transitions in the
state machine of an application while it is executing on the target. In
addition, message events can be traced on the states and transitions
within state machines, on the interfaces of objects, and on message
interactions between collaborating objects. Model execution can be
stopped using model-level breakpoints, triggered by any of these
traced message events.

This type of high-level debugging is relatively new to most
developers. Without automatic application generation, developers
must manually translate their designs into the implementation
language. This manual step causes a disconnect between the design
and the implementation. With Rose RealTime, this disconnect is
eliminated, so developers can debug using their choice of model- or
source-code-level debuggers — using the appropriate level of
abstraction for the problem.

Real-Time Operating Systems and Language Tools Supported

Rose RealTime runs on Solaris, HP-UX, and Windows NT platforms.
Rose RealTime supports both host and embedded target execution.
In the embedded real-time market, it supports all of the leading
operating systems, including Wind River’s VxWorks, Integrated
Systems’ pSOS+, Mentor Graphics’ VRTX, and Enea’s OSE. Support
for additional target operating systems is available from ObjecTime
Limited.

i

International Data Corporation

In addition to support for model-
based debuggers, Rose RealTime
provides integrated support for

source language debugging fools.

Model elements can now be
versioned and stored in a repository
for use and sharing among
members of a large team.

Integration with CM systems brings
large-team development support to
Rose RealTime.

Over the past year, Rational has
made important enhancements to
its standard Rose 98 product.

d

In addition to support for model-based debuggers, Rose RealTime
provides integrated support for source language debugging tools.
These include products from Wind River, Green Hills, Mentor
Graphics, and GNU.

Integration with Configuration Management

Rose RealTime provides integrated configuration management (CM)
support for Rational’s ClearCase and Microsoft’s Visual SourceSafe,
SCCS, and RCS. An application interface allows integration with
other CM systems. This integration brings a level of large-team
support. Model elements can now be versioned and stored in a
repository for use and sharing among members of a large team. A
saved Rose RealTime model file contains all diagrams, classes, and
packages. A team can place the model elements in the CM system,
permitting a finer level of granularity and allowing individual
diagrams, classes, and packages to be stored, versioned, and checked
in as individual files in the CM repository. This allows different
developers to check out files to work on in parallel on different parts
of a complex model.

Rose RealTime does not currently support automatic differencing
and merging of files. Changes to versions of a file must be made
manually. However, a Visual Differencing tool is included. This tool
is a graphical presentation of the differences between versions of a
model or file.

The results of comparison are shown in a Difference Browser. There
are three kinds of differences that are reported: additions, deletions,
and modifications. Since models are hierarchical in nature
(packages contain classes, classes contain relationships and
operations, operations contain parameters, etc.), this is represented
in the reported differences. A change to a model element lower in
the hierarchy would report modifications to all enclosing model
elements in the hierarchy.

Integration with CM systems brings large-team development
support to Rose RealTime. It takes Rose RealTime from being a
single-user environment to a team-based environment. Complex
real-time systems such as a telephone switch or a command-and-
control system are designed and built by large software development
teams working in parallel. Tracking and controlling the design
model as it evolves make the use of version control and
configuration management essential.

Rational Rose 98i: The Rest of the Story

Over the past year, Rational has made important enhancements to
its standard Rose 98 product. These range from integration with
IDEs to the addition of large-team support and business process
modeling. Rose 98i adds the following:

e Activity diagrams

* The Model Integrator tool, which is integrated with Rational
ClearCase

International Data Corporation -9- 20089

For large-team support, the Model
Integrator brings features that
contribute greatly to transforming
Rose from a single-user toolset to a
large-team environment.

The Model Integrator is a visual
merge-and-compare tool. It allows
large design teams to work
concurrently and in parallel on
different or the same part of an
object model.

20089

» IDE-specific round-trip engineering for Visual C++ 6.0
» Enhanced Java and CORBA integration
e A Web publisher

Of these activity diagrams, the Model Integrator and the Visual C++
integration are worthy of special attention.

Activity Diagrams

Activity diagrams use UML to model business processes and work
flows. In addition, activity diagrams can be used to describe flow or a
sequence of events in a system. An example of an activity diagram is
shown in Figure 4.

Activity diagrams are flowcharts that describe a set of activities and
transitions within a system. An activity diagram is a special case of a
state machine where most of the states are activities, and transitions
may take place on the completion of an activity rather than by an
external trigger or event. The activity diagram has a basic set of
notations that include states, transitions, decisions, and
synchronization bars.

Decisions have a set of defined guard conditions that control the
transitions or a set of alternative transitions once an activity has
been completed. Synchronization bars are used to show parallel
process flows and concurrent threads in a system.

For large-team support, the Model Integrator brings features that
contribute greatly to transforming Rose from a single-user toolset to
a large-team environment.

The Model Integrator

The Model Integrator allows true parallel and concurrent model
development. The Model Integrator is a visual merge-and-compare
tool. It allows large design teams to work concurrently and in
parallel on different or the same part of an object model. It supports
the comparison and merging of model elements from up to seven
different contributor files. These can be multiple versions of the
same model, unrelated models, or a combination. Comparison and
merging of model files can be with or without associated subunits.

In many ways, the Model Integrator works much like an n-way diff
tool, executing automatic merges wherever possible and notifying
users when there are conflicts. With the Model Integrator serving as
a ClearCase Type Manager, nonconflicting changes are automatically
merged, and conflicting changes are identified and presented
visually for resolution.

-10 -

i

International Data Corporation

Rose 98i/Visual C++ employs an
“update in place” model to locate
and update existing code.

d

Figure 4

A Simplified Activity Diagram

) N
(Verify access code
_)
Ve \
[Incorrect] ‘[Handle incorrect access
_)
[Correct]
4 \
‘ Ask for amount | [Resolved]
AN /

[Amount not available]

[Amount Available]
receipt

. N ‘\,
Dispense Cash ‘

' _ N
‘ Finish transaction ‘
and print receipt

!

o\
“/ Prepare to print

/-
®
-/

Source: Rational Software Corp., 1999

Visual C++ Integration

[Not resolved]

Rose 98i/Visual C++ employs an “update in place” model to locate
and update existing code. Code generation does not require
“protected regions” to place code. Only those items and declarations
represented by semantics in the model are updated; all other code is

left undisturbed.

International Data Corporation -11-

20089

Rose 98i is available for Windows
95, 98, and NT and comes in three
packages.

20089

Rich semantics enable “legacy” applications to be leveraged by
creating models from existing code. Existing components can be
created as models. Renaming of class and member declarations
across code generation and reverse-engineering cycles is supported.
Rose 98i supports the generation and reverse engineering of MFC
messages as well as command-and-notification message handlers.

Visual C++ integration makes liberal use of wizards to improve ease
of use and eliminate reliance on complex code-generation properties
and rules.

One such wizard is the Model Assistant Tool, which replaces the
standard Rose specification dialog for Visual C++ assigned classes.
The Model Assistant Tool provides an enhanced user interface for
viewing and editing Visual C++ and MFC semantics.

IDC is of the opinion that these key enhancements in Rose 98i make
it the tightest available integration with Visual C++.

Packaging and Pricing

Rose 98i is available for Windows 95, 98, and NT and comes in three
packages:

* The Enterprise Edition is the full-blown set, complete with
modeling, full language support, and Web publishing of models
and documentation.

» The Professional Edition supports a choice of Visual Basic, C++,
or Java and does not include Web publishing.

e The Modeler Edition supports modeling only.

All editions are integrated with version control and configuration
management tools. Enterprise, Professional, and Modeler are priced
at $3,955, $2,388, and $1,612, respectively, for single-user licenses
with one year of support. Rose 98i for Unix is available on Sun
Solaris, HP-UX, IBM AIX, SGI IRIX, and Digital Unix; the product is
priced at $3,955 for single-user licenses with one year of support.

Rose RealTime is available in two packages:

e The Modeler Edition provides support for C++ executables on
the host system and is priced at $6,800 (node-locked) for a single
user with one year of support.

e The Developer Edition provides support for C++ executables for
host systems and target real-time operating systems, such as
Wind River Tornado/VxWorks, ISI pSOS, Microtec VRTX, and
Enea OSE. It is priced at a $9,600 (node-locked) for a single user
with one year of support.

-12 -

i

International Data Corporation

With Rose RealTime, developers
now have a language and tools to
create and describe architecture
models of real-time systems and
ensure that the design models are
complete and executable.

d

Summary and Conclusions

Rose RealTime’s strengths are in modeling, code generation and the
visualization of models during execution. IDC’s opinion is that these
key features coupled with the full complement of industry-standard
UML support makes Rose RealTime a major contender as the de
facto st andard for real-time embedded system development. In real-
time embedded application development, as teams get closer to
code, they tend to stray further and further away from the original
requirement. With Rose RealTime, developers now have a language
and tools to create and describe architecture models of real-time
systems and ensure that the design models are complete and
executable. Since the code is generated directly from the design, the
UML design and the implementation are always synchronized, thus
eliminating manual design translation errors.

With the Model Integrator enhancements, Rose 98i establishes itself
in the mainstream of large-team IT development. IDC believes that
Rose’s position has been made even stronger, with the result that the
use of this environment will become much more prolific.

Document #: 20089
Publication Date: August 1999
Published Under Services: Development Life-Cycle Management

International Data Corporation -13- 20089

